
Quantization Watermarking

Joachim J. Eggers
Telecommunications Laboratory

University of Erlangen-Nuremberg
Cauerstrasse 7/NT, 91058 Erlangen, Germany

Bernd Girod
Information Systems Laboratory

Stanford University
Stanford, CA 94305-9510, USA

Proceedings of SPIE Vol. 3971:
Security and Watermarking
of Multimedia Contents II
San Jose, Ca., Jan. 2000.

ABSTRACT

A watermarking scheme for distinguishing different copies of the same multimedia document (fingerprinting) is investigated.
Efficient transmission of natural data requires lossy compression, which might impair the embedded watermark. We investigate
whether the quantization step in compression schemes can be replaced by dithered quantization to combine fingerprinting and
compression.

Dithered quantization offers the possibility of producing perceptually equivalent signals that are not exactly equal. The non-
subtractive quantization error can be used as the watermark. We denote the proposed watermarking scheme as ”quantization
watermarking”. Such a scheme is only practical for watermarking applications where the original signal is available to the
detector. We analyze the influence of the dither signal on the perceptual quality of the watermarked document and the watermark
detection robustness.

Further, the cross-talk between the non-subtractive quantization errors for two different dither realizations is investigated.
An analytical description for fine quantization and experimental results for coarse quantization show how the cross-talk depends
on the characteristics of the dither signal. The derived properties of quantization watermarking are verified for combined JPEG
compression and fingerprinting. The detection robustness for the proposed quantization error watermark is compared with that
of an independent additive watermark.

Keywords: Digital watermarking; Dithered quantization; Image watermarking; JPEG

1. INTRODUCTION

Digital watermarking refers to the embedding of information into multimedia data without introducing perceptual changes to
the original data. This technique has been proposed to combat the emerging problem of illegal copying of digital audio, image
and video data. The watermarks can be used to embed copyright information into the data itself, or to mark different copies
of one document, which allows tracing of an illegal copy back to its owner. The latter application, called fingerprinting, is
considered in this article. We focus on fingerprinting of still image data.

In contrast to many other watermarking applications, the original signal is usually available to the fingerprint detector, which
simplifies the information transmission. On the other hand, fingerprints can suffer fromcollusion attacks, where differently
fingerprinted copies of one document are mixed. Boneh and Shaw1 have constructed codes that are secure against such collusion
attacks. However, their scheme assumes that no further attacks against the fingerprints occur. Guth and Pfitzmann2 extended
Boneh and Shaw’s scheme to the case where single fingerprint bits are detectable only with a certain bit error rate. In this paper,
we do not consider collusion attacks, but we determine the detection error rates for our proposed fingeprinting scheme, which
is important for designing the collusion-secure codes.

Natural image data usually provide some room for hidden fingerprints. However, the data are often compressed by lossy
algorithms for efficient transmission and storage. This operation can degrade the robustness of embedded fingerprints signif-
icantly. Therefore, a method for combined fingerprinting and compression is discussed in this article. Further impairment of
embedded fingerprints can occur due to geometrical distortions of the image. This type of attack can decrease the watermark
detection performance severely if no proper resynchronization of the watermark detector is implemented. In this paper, we
assume synchronized access to the watermarked data. This is not too restrictive, since the availability of the original signal to
the detector should enable sufficiently accurate resynchronization.

For a general fingerprinting scheme, as described in Fig. 1, the embedding process can be described by

~sk = ~x+ ~wk; (1)

Further author information: Send correspondence to J. J. Eggers. Email: eggers@LNT.de. At the times of submission and acceptance of this paper, B.
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where~x denotes the original signal,~wk the signal modification by the embedding process, and~sk the published signal (fin-
gerprinted copy).~x is also called the “host signal”. For a secure fingerprinting scheme, a key is mandatory. For instance, the
seed of the involved pseudo-random sequence generator generating the watermarks can serve as a key. Some watermarking
schemes, including the one proposed in this article, are more complex than the simple addition of a sequence. However, in
all cases the watermark can be defined to be the difference between the original signal and watermarked copy, and thus (1) is
a valid generalization. In the remainder of this article, signals are denoted by vectors (e.g.,~x), thenth signal sample of~x by
x[n], wheren 2 N andN is the set of sample indices, and random variables by boldface (e.g.,x). The indexk denotes the
fingerprint number.

~x ~sk=~x+~wk

Embedding Attacks Detection

Fingerprintk FingerprintkKey

~r

signalsignal

host public

Figure 1. Model of fingerprinting

The fingerprint detector receives a signal~rk = ~sk + ~v = ~x + ~wk + ~v, where~v includes any distortion that might be
introduced between fingerprint embedding and detection. We mentioned already that lossy compression is one of the operations
introducing distortion. However, in many applications compression might occur right after fingerprint embedding. Thus,
combined fingerprinting and compression seems to be reasonable. The purpose of this article is to investigate how much can
be gained by doing so.

A crucial component in lossy compression is (coarse) quantization of the signal samples. Dithered quantization allows one
to modify the quantization process, usually without significant changes to the document quality. Thus, we propose combining
fingerprinting and compression by replacing the common quantization step in compression algorithms with dithered quantizers.
In particular, we consider uniform scalar quantization as used in JPEG compression of still images. We denote this approach
by the termquantization watermarking . The non-subtractive quantization error is considered the watermark~wk. Note that
this approach is not practical when the host signal is not available to the fingerprint detector.

Dithered uniform scalar quantization has already been used in several proposals for digital watermarking.3{5 In all these
proposals, dithered quantization is combined with other methods to improve watermark detection when the host signal is
not available to the detector. From the information-theoretic point of view, the watermark capacity does not depend on the
availability of the host signal to the watermark detector.6,7 Using dithered quantization, it is possible to replace the random
codebook in Costa’s proof6 by a systematic one. However, in our case the original is available to the fingerprint detector. Here,
dithered quantization is simply used to combine fingerprinting and compression.

Dithered quantization is briefly reviewed in Section 2, and the actual influence of dithered uniform scalar quantization on
the signal distortion is discussed. In Section 3 the cross-correlation between quantization errors for different dither sequences is
analyzed. Possible detection methods are discussed in Section 4. In Section 5, experimental results for an image fingerprinting
scheme are presented, and Section 6 concludes the article.

2. DOCUMENT QUALITY AFTER DITHERED QUANTIZATION

Watermarking of a signal and subsequent quantization can be considered as dithered quantization of the original signal. Dithered
quantization has been investigated in the past8{10 for several purposes. In this section, some important results are reviewed and
their relation to watermarking is shown. We consider only uniform scalar quantization and independent identically distributed
(I.I.D.) signals.

2.1. Fundamentals of Dithered Quantization

Dithered quantization is an operation in which a signal~d, calleddither , is added to an input signal~x prior to quantization.
There are two kinds of dithered quantizers, the subtractive dithered quantizer as depicted in Fig. 2(left) , and the non-subtractive
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dithered quantizer, as in Fig. 2(right). Subtractive dithered quantization is only realizable when the receiver of the digital data
has synchronized access to the dither sequence. The dithered quantization error (DQE) signals for both operations are:

subtractive DQE : ~e = ~s� ~x = ~s� ~z (2)

non-subtractive DQE : ~� = ~s� ~x = ~e+ ~d; (3)

where~s denotes the output of the non-subtractive dithered quantizer, and~s denotes the output of the subtractive dithered
quantizer.

x[n]

d[n] d[n]

z[n] s[n] s[n]
Q PP x[n]

d[n]

z[n] s[n]
QP

Figure 2. (Left) Subtractive dithered quantization; (right) non-subtractive dithered quantization

The distributor of the signal~x will send the signal~sk to his clientk in the case of combined fingerprinting and compression.
Thus, the non-subtractive DQE~�k describes the signal distortions due to the embedding process. However, in some cases more
insights can be gained by looking at the subtractive DQE~ek due to the relationship~�k = ~ek + ~dk. For brevity, the fingerprint
indexk is omitted in the remainder of this section.

The previous work on dithered quantization was mainly motivated by the goal of achieving a quantization error that is
independent from the quantizer input. This is important, for instance, in the case of universal quantization11 or to avoid
subjectively unpleasant error patterns, e.g., for sinusoidal input sequences. Schuchman10 showed that the subtractive DQE~e
does not depend on the quantizer input when the dither signal~d has a uniform distribution within the range of one quantization
bin (d 2 [��=2;�=2]), leading to an expected squared error of E

�
e
2
	
= �2=12. Gray and Stockham8 reviewed and extended

this work. They derived dither signals leading tonon-subtractiveDQEs~� in which themth moment does not depend on the
quantizer input. Unfortunately, the independence is usually achieved only by increasing the expected squared error E

�
�2
	

of
the non-subtractive DQE.

2.2. Theoretical Analysis of Quantization Noise Power

The theory on dithered quantization was exploited in12 to analyze the robustness of common additive watermarking schemes
against quantization attacks. This work also enables us to predict the power of the quantization noise for different types of
dither signals, and thus, to investigate the embedding distortion of the proposed quantization watermarking scheme. The dither
signal ~d is modeled by an I.I.D. random processd with even symmetric PDFpd (d) and zero mean Efdg=0. The host signal
~x is modeled by an I.I.D. random processx with PDFpx (x). The ditherd is independent from the hostx. Therefore, it is
convenient to express the statistics of the quantization error in terms of the characteristic functions of the dither signal and the
host signal. We define the integral

M (k)
x

(ju) =

1Z
�1

xk px (x) exp (jux) dx; (4)

which equals thekth derivative of the characteristic function, except for a complex factor. For convenience, the PDFs are
normalized by their standard deviations, leading to

p~x (x) = �x px (�xx) (5)

M
(k)
~x (ju) =

1

�kx
M (k)

x (ju=�x) ; (6)

where~x indicates the usage of the normalized random variable. In some cases it is useful to relate the standard deviations�x
and�d to the quantizer step size�. We define the normalized parameter� = �d

� and� = �x
� .

Using (3), the distortion introduced by a non-subtractive dithered quantizer can be written as

E
�
�2
	
= E

�
e
2
	
+ E

�
d
2
	
+ 2Efedg : (7)
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We showed12 that E
�
e
2
	

and Efedg can be computed by

E
�
e
2
	

�2=12
= 1 + 12

1X
b=1

(�1)b

�2b2
M~x (j2�b�)M~d

(j2�b�) (8)

Efedg
�2
d

=

1X
b=1

(�1)b

�b�
M~x (j2�b�) Im

n
M

(1)
~d

(j2�b�)
o
: (9)

In our experimental fingerprinting scheme, described in Section 5, the coefficients of an8�8-block-DCT are watermarked.
When these coefficients are modeled by a generalized Gaussian random variable,12 (8) and (9) can be used to predict the
quantization noise power very accurately. For understanding the main influence of the dither signal on the quantization error,
it is sufficient to model the host signal by a Laplacian random variable, which equals a generalized Gaussian with shape factor
� = 1. Therefore, only a Laplacian host signal with zero mean will be considered in the remainder of this section. The
characteristic function of the Laplacian random variable isM~x (ju) =

1
1+ 1

2
u2

, and the expected squared quantization error in

the undithered case (d=0) is given by

E
�
�2
d=0

	
�2=12

=
E
�
e
2
d=0

	
�2=12

= 12�2

 
1� 1p

2� sinh 1p
2�

!
: (10)

2.3. Embedding Distortion Dependent on Dither Statistics

The influence of the dither distribution on the quantization noise power for different quantizer step sizes� is very important for
proper design of a quantization watermarking scheme. The power of the non-subtractive DQE~� can serve as a measurement for
the fingerprint embedding distortion and, thus, should be below the threshold of perceptibility. We discuss results for uniform,
Gaussian and bipolar dither distributions.

In Fig. 3, the normalized expected power of the subtractive DQE as a function of� is shown for0 < � < 1 and two
different values of�. Analytic and experimental results are depicted. The excellent agreement between simulated and analytic
results confirms the validity of (8). Further, the curves demonstrate the large influence of the dither distribution on the power
of the subtractive quantization noise for small values of� = �x=�, meaning coarse quantization. For coarse quantization,
the subtractive dither quantization noise is much larger than the noise of undithered quantization. On the other hand, neither
the dither distribution nor its power has a significant influence on the subtractive quantization noise power for sufficiently fine
quantization (large�). In Fig. 3(left), the power of the dither is chosen such that� = �d=� = 1=

p
12. For this value of�, the

uniform dither meets Schuchman’s condition, ensuring that the subtractive DQE power is E
�
e
2
d uniform

	
= �2=12, independent

of the quantizer input. This effect is clearly visible in Fig. 3(left). We also observe that for all� the Gaussian dither leads to
lower quantization noise than the uniform or the bipolar dither. Similar results for� = 0:25 are depicted in Fig. 3(right). For
this value of�, the bipolar dither has the samples��=4, which is a very popular dither sequence in watermarking schemes.
Although for all dither signals the quantization noise is monotonically decreasing for an increasing quantizer step size, the noise
power is still very close to�2=12 even for very large quantizer step sizes.

Fig. 4(left) depicts the normalized noise power of the non-subtractive DQE, which is calculated using (7), (8) and (9).
Since� = 0:289, the dither signal has a power of�2=12. For fine quantization, the power of the non-subtractive DQE is
approximately the sum of the dither power�2=12 and the power of the subtractive DQE, shown in Fig. 3(left). In this case, the
subtractive DQE is almost independent of the dither signal. However, for coarse quantization, the term Efedg in (7) becomes
important. The non-subtractive DQE~� is largest for a Gaussian dither signal for all values of�. In contrast to Fig. 3, the
bipolar dither leads to the smallest non-subtractive quantization noise of all three considered dither distributions. This is due to
the stronger dependencies between the bipolar dither and its subtractive quantization noise. Another interesting effect visible
in Fig. 4(left) is that the normalized non-subtractive quantization noise tends to zero for very large step size� and bipolar or
uniform dither signals, whereas a non-zero normalized noise power remains in the case of a Gaussian dither signal. This effect
is due to the bounded amplitude of the uniform and bipolar dither in contrast to the unbounded amplitude of Gaussian dither
signals.

Finally, Fig. 4(right) depicts the embedding distortion of a quantization watermarking scheme in terms of the document-
to-noise ratio (DNR= 20 log10 �x=��) for different quantizer step sizes and different dither distributions. This plot simply
presents the results of Fig. 4(left) in a different way. The triangles show the DNR that would be predicted by the quantization
noise formula�2=12, which is only valid for fine quantization. For fine quantization the undithered quantizer achieves about

4



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
subtractive quantization error;  Laplacian host; ζ=0.289

χ=σ
x
/∆

E
(e

2 )/
(∆

2 /1
2)

no dither       (analytic)    
Gaussian dither (analytic)    
uniform dither  (analytic)    
biplolar dither (analytic)    
no dither       (experimental)
Gaussian dither (experimental)
uniform dither  (experimental)
bipolar dither  (experimental)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
subtractive quantization error;  Laplacian host; ζ=0.250

χ=σ
x
/∆

E
(e

2 )/
(∆

2 /1
2)

no dither       (analytic)    
Gaussian dither (analytic)    
uniform dither  (analytic)    
biplolar dither (analytic)    
no dither       (experimental)
Gaussian dither (experimental)
uniform dither  (experimental)
bipolar dither  (experimental)

Figure 3. Normalized power of the subtractive DQEe for different dither distributions and different dither standard deviations;
(left) � = �d=� = 1=

p
12 = 0:289 ; (right) � = �d=� = 0:25

3 dB higher DNR than the different dithered quantizers. For coarse quantization this gap is even larger, except for very coarse
quantization where dither-dependent bounding effects occur.

Practical watermarking schemes will only operate at high DNRs, where many of the previously discussed effects do not
occur. Fig. 4(right) shows that for high DNR the dither distribution has no significant influence and the embedding distortion
can be calculated by the sum of dither power and undithered quantization noise power. The presented theory can be used to
determine the compression strength at which it is no longer useful to replace fixed quantization by dithered quantization.
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0:289; (right) document-to-noise ratio DNR= 20 log10 �x=�� after fingerprint embedding via dithered quantization.

3. CROSS-CORRELATION BETWEEN DIFFERENT QUANTIZATION ERRORS

In the previous section, dithered quantization was described and the corresponding mean squared (non-)subtractive DQE was
analyzed. Thus, the embedding distortion of the proposed quantization watermarking scheme was characterized. In this section,
we turn to the problem of distinguishing the differently quantized copies of the same original signal. We focus on the cross-
correlation between the different quantization errors. In common additive watermarking schemes, it is easy to choose different
watermarks independently. This is not the case for the proposed quantization watermarking scheme, since the cross-correlation
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between different quantization errors may depend on the distribution of the dither signal and the host signal. We discuss
theoretical results for fine dithered quantization, and some simulation results are presented for coarse quantization.

3.1. Fine quantization

In the case of fine quantization, the PDF of the host signalx is almost constant over the range of one quantization bin. Thus,
the distribution of the host signal, e.g., Gaussian or Laplacian, has no influence on the statistics of the quantization noise.
The expectation Efxeg tends to zero, and, for dither signals drawn independently from the host signal, Efx�g is almost
zero, too. First of all, two uniform scalar quantizers with equal step size�, but constant offset��, will be considered. An
expression for the cross-correlation between their quantization errorse1 ande2 is derived. Then the cross-correlation between
two (non-)subtractive DQEs achieved for two independent dither realizationsd1 andd2 is computed by averaging over all
possible effective quantizer shifts.

3.1.1. Two Quantizers with Constant Offset��

We consider quantization with the prototype uniform scalar quantizerQ = Q1 with step size� and the quantizerQ2 with step
size� and offset��, as shown on the left side of Fig. 5.� could take any real value, but, due to the symmetry of the uniform
scalar quantizer, it is sufficient to consider� 2 [0; 1). The subtractive DQEe2 = x�Q2[x] of the shifted quantizerQ2 can be
expressed for every sample of the host signalx as a function of the subtractive DQEe1 = x�Q1[x] of the prototype quantizer
Q = Q1:

e2 =

�
e1 + �� for e1 2

���
2 ;

�
2 � ��

�
e1 + ���� for e1 2

�
�
2 � ��; �2

� (11)

It is sufficient to investigate the quantization error for one quantization bin, since fine quantization is considered. The PDF of
the subtractive DQEe1 can be approximated bype1 (e1) = rect(e1=�). For both quantizers, the mean squared error will be
the same, specifically�2e1 = �2e2 = �2e = �2=12. Thus, the normalized cross-correlation betweene1 ande2 is

Efe1e2g
�2
e

=
1

�2
e
�

�=2Z
��=2

e1 � e2 de1 =
1

�2
e
�

�=2���Z
��=2

e1 � (e1 + ��) de1 +
1

�2
e
�

�=2Z
�=2���

e1 � (e1 + ����) de1

=
�2

12�2
e

(1� 6�+ 6�2) = 1� 6�+ 6�2 (12)
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Figure 5. Cross-correlation between the quantization errors of two uniform scalar quantizers with constant offset��

The quantization error cross-correlation as a function of� is shown in Fig. 5. The plot also indicates that (12) is periodic
in � with the periodicity 1. Note that the cross-correlation result is identical if the offset�� is not removed after quantization,
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meanings2 = Q[x � ��] is considered instead ofs2 = Q[x � ��] + ��. Zero cross-correlation Efe1e2g is achieved for
the quantizer offsets�01;2� with

�01;2 =
1

2
�
r

1

12
� 0:7887; 0:2113: (13)

3.1.2. Quantization Error Cross-Correlation after Random Dithering

The cross-correlation between the DQE of two different (non-)subtractive dithered quantizers can be calculated by considering
the effective offset between the representation levels of the subtractive dithered quantizers. With help of the PDFp� (�) of the
effective offset, the cross-correlation can be computed by

Efe1e2g
�2e

=

0:5Z
0

(1� 6�+ 6�2)p� (�) d�; (14)

where the periodicity and symmetry in� is exploited. Assuming independent dither signals~d1 and~d2 with the PDFspd1 (d1)
andpd2 (d2), the PDF of the effective offset difference can be computed by convolving the dither PDFs with each other, that
is, p� (�) = pd1 (�) ? pd2 (�). Now, three example dither signals are investigated to illustrate this result. We assume in all
examples that the PDFspd1 (d1) andpd2 (d2) are identical.

Example 1: Bipolar dither with d 2 f��=4;�=4g
The effective offset is 0 in half of all cases and 0.5 otherwise. Hence, the cross-correlation between the DQE is Efe1e2g =�2e =

0:5 � 1 + 0:5 � (�0:5) = 0:25.

Example 2: Continuous dither with uniform distribution in [��=4;�=4)

Here,p� (�) is triangular withp� (0) = 2 andp� (j�j > 0:5) = 0. Therefore, the cross-correlation between the DQE is
Efe1e2g =�2e = 2

R 0:5
0

(1� 6�+ �2)(2� 4�)d� = 0:25:

Example 3: Continuous dither with uniform distribution in [��=2;�=2)

The effective offset difference will also have a triangular distribution, but withp� (0) = 1 andp� (j�j > 1) = 0. However,
due to the periodicity and symmetry in�, this PDF can be translated into a uniform distribution over all� 2 [��=2;�=2).
Hence, the cross-correlation between the DQE is Efe1e2g =�2e = 2

R 0:5
0

(1� 6�+ �2)d� = 0: This result agrees with the
theory on dithered uniform scalar quantizers. As already mentioned in Section 2, Schuchman10 showed that a uniform dither
in [��=2;�=2) makes the subtractive DQE independent from the quantizer input.

The previous analysis shows that the cross-correlation between two (non-)subtractive DQE is strongly dependent on the
statistics of the dither signal. We verified that zero cross-correlation between two quantization error signals, representing
the fingerprints in our case, can be achieved for a continuous dither uniformly distributed in[��=2;�=2). Note that this is
impossible for any random bipolar dither sequence, since for half of the samples the quantization error correlation is one and
for the other half it cannot be lower than -0.5.

3.2. Coarse quantization

An analytic investigation of the cross-correlation between different DQEs is difficult for coarse quantization. This is due to
the dependence of the DQE on the host signal and the dither distribution, which can be neglected only for fine quantization.
Therefore, only simulation results are briefly discussed in this subsection. We chose a synthetic host signal with Laplacian
distribution, applied dithered quantization with two different dither sequences, and computed the cross-correlation between
both subtractive and non-subtractive DQEs. We investigate the case of two independently generated dither sequences~d1 and~d2,
and the case of dependent dither sequences, specifically~d2 = �~d1. Again, Gaussian, uniform and bipolar dither distributions
are considered. For fine quantization, the simulation results confirm the analytic results discussed in Section 3.1.

First of all, the case of two independent dither sequences is considered. We found that the results for Efe1e2g are almost
identical to those of Ef�1�2g, which corresponds to the same effect derived for fine quantization. The experiments showed that
the normalized cross-correlation between the subtractive DQE increases rather than decreases for coarse dithered quantization.
This effect is stronger for low-power dither signals, and agrees with intuition, which says that coarser quantization makes the
quantized signals more similar rather than more different.
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The case of two dependent dither sequences with~d2 = �~d1 is particularly important since such a signaling gives best
watermark robustness when the dither is used for watermark detection. Obviously, it is difficult to design two dither sequences
leading to�2 = ��1. Thus the relation between�1 and�2 is investigated for the case of dithering with~d2 = �~d1. Since
Ef�1�2g = Efe1e2g+ Efe1d2g+ Efe2d1g+ Efd1d2g, with Efe1d2g = Efe2d1g � 0 for sufficient fine quantization,
the cross-correlation Efe1e2g determines also the cross-correlation Ef�1�2g. However, for coarse quantization the simulations
show that the cross-correlations Efe1d2g and Efe2d1g increase and thus gives also an increased Ef�1�2g. This indicates
again more similar DQEs for coarser quantization. The minimum measured Ef�2�1g =E

�
�1

2
	

in all our experiments is�0:75,
which is achieved for a bipolar dither distribution and fine quantization.

4. WATERMARK DETECTION AFTER COMBINED WATERMARKING AND COMPRESSION

4.1. General Detection Principle

Communication theory tells us that maximum a posteriori (MAP) detection forms the optimal decision rule when the costs
for all possible errors are equal. When all codewords are sent with equal probability, MAP detection is equal to maximum
likelihood (ML) detection. When Gaussian channel noise is assumed, a minimum-distance decoder can be derived from the
ML rule. This step is critical in the case of watermark detection, since the channel noise (noise introduced by an attacker) might
be non-Gaussian. Nevertheless, minimum-distance decoding usually works quite well, even for non-Gaussian channel noise,
and thus is widely used. Finally, the minimum-distance detector can be translated into a correlation detector, under some weak
assumption like equal power of all possibly transmitted signals. We will use a correlation detector, as in most watermarking
schemes. However, some modifications are introduced to improve the detection performance where possible. As described in
Section 1, the detector receives a signal~r = ~x + ~w + ~v. The fingerprint detector has access to the original signal~x, and thus
can subtract it from the received signal, which yields the pre-processed signal~y = ~r � ~x. For very strong attacks, a weighted
subtraction of~x would be better12{14 since strong attacks also remove information about the original. However, for simplicity
we neglect the weighting in this work.

Correlation detection means the decision is based on the value

ck =
1

N

NX
n=1

y[n]wk[n] =
~yt ~wk

N
8k 2 K: (15)

Improved detection robustness can be gained by channel coding or the collusion-secure codes mentioned in Section 1, depend-
ing on the application. Here,K describes not the set of all possible fingerprints, but the set of possible indices for one code
symbol. Only 2-ary signaling is considered, thusK = f0; 1g. Further, an equiprobable distribution ofk is assumed. Therefore,
ML decision based on the measured correlationck forms the optimal detector, once we restrict ourself to use onlyck. In this
case, the probability density functions (PDFs) of the hypothesesH0 (k = 0 was sent) andH1 (k = 1 was sent) describe the
detection performance. Due to the summation over several samples in (15), the shape of the PDFspc (cjH0) andpc (cjH1)
can be approximated by a Gaussian distribution, which is completely determined by its mean and variance. Thus, the four
parameters�H0

= EfcjH1g, �H1
= EfcjH1g, �H0

= STDfcjH0g and�H1
= STDfcjH1g are sufficient to design and

describe the detection process.

4.2. Detection from Independent Channels

One important assumption when reducing ML decision to correlation detection is that the signal samples are I.I.D.. However,
this is seldom true in practical watermarking schemes. For this reason it is useful to split the host signal into independent
sub-signals, where each sub-signal is approximately I.I.D.. The watermark is embedded in each sub-signal separately. From
the information-transmission viewpoint, the different sub-signals can be regarded as independent sub-channels. The detector
computes the correlation (15) for each sub-channel, yieldingci, and finally combines these values to make the decision between
H0 andH1. We discussed this approach before13 for the case of watermark detection after quantization attacks. In that
work the decision between “watermark is present” and “watermark is not present” was considered and led to the assumption
�H0;i = 0; 8i. This assumption is not valid in our present case. Without derivation, we state here the extension for�H0;i 6= 0:

H0 :

imaxX
i=1

ci!i > t (16)

with t =

imaxX
i=1

�2H0;i
� �2H1;i

�2i
and !i =

2(�H0;i � �H1;i)

�2i
: (17)
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Here,imax denotes the number of sub-channels,t is the decision threshold, and!i can be considered the weight for sub-channel
i. The assumptions are the same as in our previous work, including that�2H0;i

= �2H1;i
= �2i . Whent and!i fit to the actual

sub-channel characteristics, the bit error rate can be predicted to be

pe = 0:5 erfc

0
@
vuutimaxX

i=1

(�H0;i � �H1;i)
2

8�2i

1
A ; (18)

where erfc(x) = 2p
�

1R
x

exp(��2) d�: Note that the detection from sub-channels can be equivalent to the detection using

whitening filters, as usually applied in communications. However, the sub-channel approach is more general since it contains
also cases where, for instance, one sub-channel is the audio signal and the other the video signal of a movie. Using whitening
filters in such a case seems to be awkward.

4.3. Exploiting Combined Fingerprinting and Compression at the Detector

In common additive watermarking schemes,~wk is the initially embedded noise sequence, which is drawn independently from
the host signal~x. However, the additive embedding of such a sequence is incompatible with the desire for compressed doc-
uments, because the successive compression step already forms the first attack on the embedded watermark. We propose to
define the non-subtractive DQE to be the watermark, that is~wk;qwm = ~�k. Note that the common additive scheme is achieved
by defining the dither signal as the watermark~wk;add = ~dk. In the remainder of the article,~d2 = �~d1 is assumed. Our main
results are similar for orthogonal dithering (~d2? ~d1), but omitted here due to space constraints. For the same reason, we further
restrict the discussion to bipolar dither distributions withd[n] 2 f��

4 g.
As mentioned above, the fingerprints embedded by dithered quantization can be detected by computing the correlation

(15), using either~wk;qwm or ~wk;add. However, in both cases we do not exploit the fact that many samples in both possible
public signals~s1 and~s2 are identical. LetNsame denote the subset of all sample indicesn 2 N with s1[n] = s2[n]. The
complementary set isNdiff, thusN = Nsame [ Ndiff. All signal samples indexed byNsame contain no information about the
embedded fingerprint, so using them for the correlation measurement can only decrease the detection performance. This can be
explained also by the sub-channel approach, discussed in Section 4.2. Let the samples indexed byNdiff and those indexed by
Nsame form two sub-channels. It is easy to see that!Nsame

= 0, and thus the sub-channel forNsame can be neglected completely.
Note that the detector, knowing the host signal~x and both possible subtractive DQE~�0 and~�1, also knows the setsNdiff and
Nsame. Therefore, two additional detection methods are the correlation measurement over all samples indexed byNdiff, either
using the non-subtractive DQE~wk;qwm;Ndiff

or the dither~wk;add;Ndiff
. Hence, we consider detection using~wk;qwm;N , ~wk;add;N ,

~wk;qwm;Ndiff
and~wk;add;Ndiff

. The detection performance of all four proposed methods is compared in the next section.

5. DETECTION RESULTS FOR IMAGE FINGERPRINTS

We motivated quantization watermarking with the demand for fingerprinted and compressed images. In Section 2 and Section 3
the power of the quantization noise of dithered quantization and the cross-correlation between different dithered quantization
errors was analyzed for synthetic signals. Now an example image fingerprinting scheme is considered, and the performance
of the detection algorithms described in Section 4 is compared. The image fingerprinting scheme is not fully optimized. First
of all, the image quality after dithered quantization has not been investigated in detail. However, the resuls from Section 2
indicate how dithered quantization performs compared to fixed quantization. Further, the image bit rate of the fingerprinted
compressed image is not considered, which is an important factor for a practical scheme. On the other hand, we can assume
that separate fingerprinting and compression cannot achieve lower image bit rates on average, since any embedded fingerprint
can be considered as a kind of dither.

5.1. Description of the Experiment

We chose the popular JPEG compression scheme15 for the example image fingerprinting and compression scheme. In JPEG
compression, the image is transformed by an8� 8 block DCT, and the DCT coefficients are quantized by uniform quantizers.
A table defines the quantizer step sizes for all 64 DCT coefficients per8 � 8 block. The quantization table is parametrized
by a quality factorQ 2 f1; 2; : : : ; 100g, where highest visual quality and lowest compression is achieved forQ = 100. The
quantizer step size is equal for all DCT coefficients forQ = 100 andQ = 1. In between, the quantizer step size may be
different for different DCT coefficients; for instance, at high quality factors, only high-frequency coefficients are quantized
coarsely.
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We substitute the fixed quantization in the JPEG algorithm for some DCT coefficients by dithered quantization, where a
bipolar dither withd[n] 2 f��

4 g is used. A simple but useful heuristic for the selection of DCT coefficients to be fingerprinted
is:

1. Apply JPEG compression to the original image with a quality factorQemb, where dithered quantization is used for all
DCT coefficients.

2. Measure the resulting mean squared error MSEemb per DCT coefficient.

3. Apply JPEG compression to the original image with a quality factorQmin < Qemb, whereQmin is the minimum quality
factor achieving an acceptable image quality.

4. Measure the resulting mean squared error MSEmin per DCT coefficient.

5. Select those DCT coefficients for fingerprint embedding, where MSEmin > MSEemb was measured.

Our presented results are obtained forQemb = 80 andQmin = 69, where the grayscale test image “Lenna” of size256� 256
was used. In this case 28, most low frequency DCT coefficients were selected. The experimental results presented below are
obtained from 100 differently fingerprinted copies of Lenna. In all cases, 20 bits were embedded, where the actual watermark
samples for one bit are spread over all DCT coefficients where dithered quantization is allowed.

So far, no attack has occured, since in our scheme the first compression step is combined with the fingerprint embedding.
The robustness of the embedded fingerprints is analyzed for attacks by a second JPEG compression step, using quality factors
from 10 to 100. Other possible attacks are simple additive white Gaussian noise (AWGN) attacks or the Gaussian test channel.
Moulin and O’Sullivan7 showed that the Gaussian test channel forms the optimal attack against watermarks in Gaussian host
signals. However, the DCT coefficients have a distribution that is more peaked than a Laplacian. We found experimentally
that in this case, quantization is a much stronger attack than the Gaussian test channel. Thus, we use JPEG compression as an
attack, although we cannot show that it is the optimal attack (it is probably not). Watermark detection after quantization attacks
has already been investigated.12,13 The watermark robustness after JPEG compression is quite different for DCT coefficients
of different frequency, such that a multi-channel approach, as described in Section 4.2, should be used, where each coefficient
forms one sub-channel. Thus, up to 64 sub-channels can exist. However, not all of them may contain a watermark due to
the constraint on the embedding distortion. For the given image size, 1024 DCT coefficients of each frequency exists. Thus,
for such a sub-channel, each of the 20 watermark bits is embedded into roughly 50 coefficients. We consider only detection
where the detector defined in (16) is optimized for the given attack. Although this might not possible in practical fingerprinting
schemes, it gives us an upper bound on the performance of the considered detection methods.

5.2. Correlation Measurements

First of all, the distribution of the measured correlation values is investigated for one example. Since 20 watermark bits are
embedded in 100 different simulations, 2000 correlation values are measured for each attack and each DCT-sub-channel. Fig. 6
depicts the measured PDFspc (c) for both hypotheses, where the attack was JPEG compression with qualityQattack = 50.
The presented correlations are measured for the 19th DCT coefficient in zigzag scan. All plots show that the assumption of a
Gaussian PDF forc is at least roughly correct. The results shown in the upper plots of Fig. 6, were obtained when all watermark
samples (indexed byN ) are used for the correlation. When detecting~wadd;N , the ratio�H0

=�H1
= �1 was measured and the

standard deviations�H0
and�H1

are equal. An error rate ofpe = 0:126 was predicted. For the detection of~wqwm;N , the ratio
�H0

=�H1
= �0:71 was measured. The unequal means are also visible in the upper right plot of Fig. 6. Due to the differences in

the variances of both hypotheses, different detection error ratespe;H0
= 0:063 andpe;H1

= 0:077 are predicted. This example
shows that detecting~wqwm;N instead of~wadd;N leads to better detection performance. On the other hand, the higher symmetry
of the PDFspc (c) when detecting~wadd;N might lead to more robust detection in practice. The main advantage of detecting
~wadd;N instead of~wqwm;N is that the thresholdt can be set to zero, which simplifies a practical scheme.

The lower plots in Fig. 6 depict the correlation results when only selected watermark samples, namely those indexed by
Ndiff, were used. We observe that for detection with~wqwm;Ndiff

both detection cases become more symmetric. Now, the ratio
�H0

=�H1
is roughly�1, and the detection error rates decrease tope;H0

= 0:053 andpe;H1
= 0:059. However, the improvement

due to sample selection is much larger when detecting~wadd;Ndiff
. Here, the high symmetry betweenH0 andH1 remains, and

the detection error rate decreases tope = 0:045. Thus, for the presented example, detection based on the dither samplesd[n]
indexed byNdiff gives the lowest bit error rate. In the next subsection, we show that this result is consistent for other differently
strong attacks and different DCT coefficients.
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Figure 6. PDFs of the detected correlation value after an attack by coarse quantization; (left) detect dither; (right) detect
non-subtractive DQE

5.3. Detection Error Probabilities

We compare the detection error probabilities for all considered correlation measurements for different attacks and different
DCT coefficient. Fig. 7 depicts predicted and measured detection error probabilites, where a linear scale is used in the upper
plots and a logarithmic scale is used in the lower plots. The left plots are for detection from the 5th DCT coefficient only,
and the right plots show results obtained by combined detection from the DCT coefficients 5, 8 and 9. It is clearly visible in
the upper plots that for strong attacks, detection with all dither samples (~wadd;N ) is less robust than the three other methods
(~wqwm;N , ~wqwm;Ndiff

, ~wadd;Ndiff
). Further, we observe that the measured and predicted error rates closely agree. It is also evident

that adding information by combining the results from sub-channels 5, 8 and 9 increases the detection performance for all four
correlation methods.

The lower plots, with the logarithmic scale, reveal the different performance of the four considered correlation methods.
Detection with samples of~wadd in Ndiff gives the lowest bit error rate for all attacks. In addition, the detection performance
when using three sub-channels instead of one improves considerably. The measured detection error rates fit not very accurately
to the predicted values at low bit error rates. However, this effect occurs because of the limited number of experiments. The
minimum measurable detection rate is5 � 10�4 for our experiments.

6. CONCLUSIONS

We propose to combine fingerprinting and compression by dithered quantization to achieve improved fingerprint detection.
Therefore, uniform scalar dithered quantization is briefly reviewed in Section 2, and the effect of dithered quantization on the
power of the quantization noise is analyzed theoretically. In Section 3, the cross-correlation between two different quantization
errors is investigated analytically for fine quantization. For coarse quantization simulation results are discussed. In Section 4,
we propose four methods for the fingerprint detection, which differ in the correlation measurement. The first two methods
are correlation detection using the entire dither sequence or the entire non-subtractive DQE. In the other two methods the
correlation with the dither sequence or the non-subtractive DQE is measured after selecting the signal samples for which the
public signals~s0 and~s1 are not identical. The four detection methods are compared for an experimental image fingerprinting
scheme. Correlating the entire received signal with the entire dither signal, which is equivalent to additive watermarking
followed by quantization, performs worst. Instead, detecting the whole non-subtractive DQE gives significantly lower bit error
rates. However, this scheme might lead to problems in practice, due to asymmetry of the measured correlation values. Finally,
the best performance was achieved by correlating only the selected samples of the received signal with the corresponding
dither samples. Thus, the knowledge about the applied dithered quantization can be exploited best by simply neglecting in the
detection process all those signal samples where the public signals are identical due to quantization.
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Figure 7. Simulated and predicted detection error rates; (left) detection from DCT coefficient 5; (right) detection from DCT
coefficients 5, 8 and 9
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